RAPID AND PRECISE QUANTIFICATION OF TARGET BIOMARKERS USING A BIOMARKER-TO-BEAD CONVERSION PROCESS PAIRED WITH A MICROFLUIDIC NANOHOLE ARRAY FOR DETECTION

A UC Santa Cruz researcher has developed a diagnostic platform that uses a two-particle biomarker-to-bead conversion process coupled to a flow-through microfluidic nanohole array. Magnetic and dielectric beads are functionalized with target-specific re…

A UC Santa Cruz researcher has developed a diagnostic platform that uses a two-particle biomarker-to-bead conversion process coupled to a flow-through microfluidic nanohole array. Magnetic and dielectric beads are functionalized with target-specific receptors. The functionalized beads form a complex with the target such that one dielectric bead binds one molecule of the target. Unbound dielectric beads are removed by retaining bound complexes using a magnet. Then the complexes are disassociated such that only the dielectric beads remain. Because the remaining dielectric beads are each associated with a target molecule, one need only count the beads to assay the number of molecules in the original sample. The beads are passed through a microfluidic nanohole array that physically captures the beads; when beads are present, the charge balance of the nanoarray changes. This technology enables quantitative measurements down to the pico and femtocell and beyond.

Abstract:

Target biomarkers are often found at low levels (e.g., attomolar to picomolar scale) in the early stages of disease. Current biosensor technologies are limited by their ability to simply and precisely detect target biomarkers at very low concentrations though. Typical biomedical samples, like blood or urine, can also compromise the specificity and sensitivity of common diagnostic platforms without extensive sample processing to remove background contaminants.

Website:

https://techtransfer.universityofcalifornia.edu/NCD/32750.html?utm_source=AUTMGTP&utm_medium=webpage&utm_term=ncdid_32750&utm_campaign=TechWebsites

Advantages:

Inexpensive

Simple to use 

Shelf-stable 

Disposable 

Easily adaptable to any marker

Adaptable to a wide variety of readouts 

Can detect picomolar, femtomolar, and attomolar concentrations 

Potential Applications:

Point of care diagnostics

Field research of viruses and other infectious agents

Detection of environmental contaminants  

Contact Information:

Name: Jeff Jackson

Email: jjackso6@ucsc.edu

Phone: (831) 459-3976