Digital Sutures for Recording Muscle Electrical Activity

­ Application Sutures fabricated with an array of small electrical sensors that can be implanted into muscle area of interest to record and monitor electrical activity. Key Benefits Improved recording resolution compared to conventional medic…

­Application
Sutures are fabricated with an array of small electrical sensors that can be implanted into muscle area of interest to record and monitor electrical activity.

Key Benefits

  • Improved recording resolution compared to conventional medical techniques.
  • Ease of adoption as suturing is a common surgical technique.
  • Flexible and compliant with muscle tissue.
  • Ability to target and record small or deep muscle tissues.

Market Summary

The conventional, widely used methods for measuring/recording electrical activity from muscles (“electromyography” or EMG) to diagnose a disease or examine the function of the nervous system in muscle tissue are fine wire EMG and surface EMG. Fine wire EMG entails the insertion of a number of wires into muscle tissue, while in surface EMG two-dimensional arrays of electrode sensors are placed on the surface of the skin. However, these methods can only record crude measures of muscle activity and are usually unable to resolve the activity of individual muscle fibers. Moreover, neither fine-wire nor surface EMG can record from small or deep tissues, and fine-wire EMG may lead to muscle tissue damage in order to obtain the reading. Therefore, new methods and devices are needed to obtain a high-resolution recording of electrical activity while minimizing damage. The market for biomaterials and constructs that possess instructive/inductive or triggering/stimulation effects on cells and tissues by engineering is expected to increase.

Technical Summary
To examine the function of the nervous system, the conventional procedure is to monitor and record electrical activity in the muscle using electrodes. Emory University researchers have developed a medical device that is a miniature electrical biosensor comprised of an array of many electrical sensors. This biosensor is made using a microfabrication technique to have the mechanical properties and appearance of sutures (“digital sutures”) - the sensors are flexible, appear thread-like, and are implanted like a suture. Using these digital sutures, the combination of high-resolution recording and recording from large numbers of muscles can be achieved. These “digital sutures” would provide an improvement to current conventional EMG methods which have limitations of resolution and ability to read small and deep muscles in addition to potential muscle damage.

Developmental Stage
The sutures have been tested successfully in different animal species and their recording ability is superior to conventional EMG methods. The first human-subject data is expected within a few months.

Website

https://emoryott.technologypublisher.com/techcase/21162

Contact Information

TTO Home Page: https://emoryott.technologypublisher.com

Name: Catherine Murari-Kanti

Title: Licensing Associate

Email: cmurari@emory.edu

Phone: (404) 727-0057